Real-space renormalization-group approach to the random transverse-field Ising model in finite dimensions
نویسندگان
چکیده
منابع مشابه
Real-space renormalization group for the random-field Ising model.
We present real–space renormalization group (RG) calculations of the critical properties of the random–field Ising model on a cubic lattice in three dimensions. We calculate the RG flows in a two–parameter truncation of the Hamiltonian space. As predicted, the transition at finite randomness is controlled by a zero temperature, disordered critical fixed point, and we exhibit the universal cross...
متن کاملNumerical Renormalization Group Study of Random Transverse Ising Models in One and Two Space Dimensions
The quantum critical behavior and the Griffiths-McCoy singularities of random quantum Ising ferromagnets are studied by applying a numerical implementation of the Ma-DasguptaHu renormalization group scheme. We check the procedure for the analytically tractable one-dimensional case and apply our code to the quasi-one-dimensional double chain. For the latter we obtain identical critical exponents...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملReal-space renormalization-group approach to field evolution equations.
An operator formalism for the reduction of degrees of freedom in the evolution of discrete partial differential equations (PDE) via real-space renormalization group is introduced, in which cell overlapping is the key concept. Applications to (1+1)-dimensional PDEs are presented for linear and quadratic equations that are first order in time.
متن کاملRandom Geometries and Real Space Renormalization Group
A method of " blocking " triangulations that rests on the self-similarity feature of dynamically triangulated random manifolds is proposed and used to define the renormalization group for random geometries. As an illustration, the idea is applied to pure euclidean quantum gravity in 2d. Generalization to more complicated systems and to higher dimensionalities of space-time appears straightforwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2013
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.87.032154